
Parsers in TEX and using CWEB for general
pretty-printing

Alexander Shibakov

In this article I describe a collection of TEX macros
and a few simple C programs called SPLinT that
enable the use of the standard parser and scanner
generator tools, bison and flex, to produce very
general parsers and scanners coded as TEX macros.
SPLinT is freely available from http://ctan.org/

pkg/splint and http://math.tntech.edu/alex.

Introduction

The need to process formally structured languages
inside TEX documents is neither new nor uncom-
mon. Several graphics extensions for TEX (and
LATEX) have introduced a variety of small special-
ized languages for their purposes that depend on
simple (and not so simple) interpreters coded as
TEX macros. A number of pretty-printing macros
take advantage of different parsing techniques to
achieve their goals (see [Go], [Do], and [Wo]).

Efforts to create general and robust parsing
frameworks inside TEX go back to the origins of
TEX itself. A well-known BASIC subset interpreter,
BASIX (see [Gr]) was written as a demonstration
of the flexibility of TEX as a programming language
and a showcase of TEX’s ability to handle a variety
of abstract data structures. On the other hand,
a relatively recent addition to the LATEX toolbox,
l3regex (see [La]), provides a powerful and very
general way to perform regular expression matching
in LATEX, which can be used (among other things)
to design parsers and scanners.

Paper [Go] contains a very good overview of
several approaches to parsing and tokenizing in
TEX and outlines a universal framework for parser
design using TEX macros. In an earlier article
(see [Wo]), Marcin Woliński describes a parser
creation suite paralleling the technique used by
CWEB (CWEB’s ‘grammar’ is hard-coded into CWEAVE,
whereas Woliński’s approach is more general). One
commonality between these two methods is a highly
customized tokenizer (or scanner) used as the input
to the parser proper. Woliński’s design uses a finite
automaton as the scanner engine with a ‘manually’
designed set of states. No backing up mechanism
was provided, so matching, say, the longest input
would require some custom coding (it is, perhaps,
worth mentioning here that a backup mechanism is
all one needs to turn any regular language scanner
into a general CWEB-type parser). The scanner in
[Go] was designed mainly with efficiency in mind

TUGboat, Volume 35 (2014), No. 1 71

and thus relies on a number of very clever techniques
that are highly language-specific (out of necessity).

Since TEX is a system well-suited for typeset-
ting technical documents, pretty-printing texts writ-
ten in formal languages is a common task and is also
one of the primary reasons to consider a parser writ-
ten in TEX.

The author’s initial motivation for writing the
software described in this article grew out of the
desire to fully document a few embedded micro-
controller projects that contain a mix of C code,
Makefiles, linker scripts, etc. While the majority
of code for such projects is written in C, superbly
processed by CWEB itself, some crucial information
resides in the kinds of files mentioned above and can
only be handled by CWEB’s verbatim output (with
some minimal postprocessing, mainly to remove the
#line directives left by CTANGLE).

Parsing with TEX vs. others

Naturally, using TEX in isolation is not the only way
to produce pretty-printed output. The CWEB sys-
tem for writing structured documentation uses TEX
merely as a typesetting engine, while handing over
the job of parsing and preprocessing the user’s in-
put to a program built specifically for that purpose.
Sometimes, however, a paper or a book written in
TEX contains a few short examples of programs writ-
ten in another programming language. Using a sys-
tem such as CWEB to process these fragments is cer-
tainly possible (although it may become somewhat
involved) but a more natural approach would be to
create a parser that can process such texts (with
some minimal help from the user) entirely inside
TEX itself. As an example, pascal (see [Go]) was
created to pretty-print Pascal programs using TEX.
It used a custom scanner for a subset of standard
Pascal and a parser, generated from an LL(1) Pas-
cal grammar by a parser generator, called parTEX.

Even if CWEB or a similar tool is used, there may
still be a need to parse a formal language inside TEX.
One example would be the use of CWEB to handle a
language other than C.

Before I proceed with the description of the tool
that is the main subject of this paper, allow me to
pause for just a few moments to discuss the wisdom
(or lack thereof) of laying the task of parsing for-
mal texts entirely on TEX’s shoulders. In addition
to using an external program to preprocess a TEX
document, some recent developments allow one to
implement a parser in a language ‘meant for such
tasks’ inside an extension of TEX. We are speaking
of course about LuaTEX (see [Ha]) that essentially

Parsers in TEX and using CWEB for general pretty-printing

implements an entirely separate interface to TEX’s
typesetting mechanisms and data structures in Lua
(see [Lu]), ‘grafted’ onto a TEX extension.

Although I feel nothing but admiration for the
LuaTEX developers, and completely share their de-
sire to empower TEX by providing a general purpose
programming language on top of its internal mecha-
nisms, I would like to present three reasons to avoid
taking advantage of LuaTEX’s impressive capabili-
ties for this particular task.

First, I am unaware of any standard tools for
generating parsers and scanners in Lua (of course, it
would be just as easy to use the approach described
here to create such tools). At this point in time,
it is just as easy to coax standard parser generators
into outputting parsers in TEX as it is to make them
output Lua.

Second, I am a great believer in generating
‘archival quality’ documents: standard TEX has
been around for almost three decades in a practi-
cally unchanged form, an eternity in the software
world. The parser produced using the methods
outlined in this paper uses standard (plain) TEX ex-
clusively. Moreover, if the grammar is unchanged,
the parser code itself (i.e. its semantic actions) is
very readable, and can be easily modified without
going through the whole pipeline (bison, flex, etc.)
again. A full record of the grammar is left with the
generated parser and scanner so even if the more
‘volatile’ tools, such as bison and flex, become
incompatible with the package, the parser can still
be utilized with TEX alone. Perhaps the following
quote by D. Knuth (see [DEK2]) would help to re-
inforce this point of view: “Of course I do not claim
to have found the best solution to every problem. I
simply claim that it is a great advantage to have a
fixed point as a building block.”

Finally, the idea that TEX is somehow un-
suitable for such tasks may have been overstated.
While it is true that TEX’s macro language lacks
some of the expressive ability of its ‘general purpose’
brethren, it does possess a few qualities that make
it quite adept at processing text (it is a typeset-
ting language after all!). Among these features are:
a built-in hashing mechanism (accessible through
\csname...\endcsname and \string primitives)
for storing and accessing control sequence names
and creating associative arrays, a number of tools
and data structures for comparing and manipu-
lating strings (token registers, the \ifx primitive,
various expansion primitives: \edef, \expandafter
and the like), and even string matching and replace-
ment (using delimited parameters in macros). TEX
notoriously lacks a good (i.e. efficient and easy to

72 TUGboat, Volume 35 (2014), No. 1

use) framework for storing and manipulating ar-
rays and lists (see the discussion of list macros in
Appendix D of The TEXbook and in [Gr]) but this
limitation is readily overcome by putting some extra
care into one’s macros.

Languages, grammars, parsers, and TEX

Or . . .
Tokens and tables keep macros in check.
Make ’em with bison, use WEAVE as a tool.
Add TEX and CTANGLE, and C to the pool.
Reduce ’em with actions, look forward, not back.
Macros, productions, recursion and stack!

Computer generated (most likely)

The goal of the software described in this article,
SPLinT (Simple Parsing and Lexing in TEX, or, in
the tradition of GNU, SPLinT Parses Languages in
TEX) is to give a macro writer the ability to use
standard parser/scanner generator tools to produce
TEX macros capable of parsing formal languages.

Let me begin by presenting a ‘bird’s eye view’
of the setup and the workflow one would follow to
create a new parser with this package. To take full
advantage of this software, two external programs
(three if one counts a C compiler) are required:
bison and flex (see [Bi] and [Pa]), the parser and
scanner generators, respectively. Both are freely
available under the terms of the General Public
License version 3 or higher and are standard tools
included in practically every modern GNU/Linux
distribution. Versions that run under a number of
other operating systems exist as well.

While the software allows the creation of both
parsers and scanners in TEX, the steps involved in
making a scanner are very similar to those required
to generate a parser, so only the parser generation
will be described below.

Setting the semantic actions aside for the mo-
ment, one begins by preparing a generic bison input
file, following some simple guidelines. Not all bison
options are supported (the most glaring omission
is the ability to generate a general LR (glr) parser
but this may be added in the future) but in every
other respect it is an ordinary bison grammar. In
some cases, a bison grammar may already exist and
can be turned into a TEX parser with just a few (or
none!) modifications and a new set of semantic ac-
tions (written in TEX of course). As a matter of
example, the grammar used to pretty-print bison

grammars in CWEB that comes with this package was
adopted (with very minor modifications, mainly to
create a more logical presentation in CWEB) from the
original grammar used by bison itself.

Alexander Shibakov

Once the grammar has been debugged (using
a combination of bison’s own impressive debugging
facilities and the debugging features supported by
the macros in the package), it is time to write the
semantic actions for the syntax-directed translation
(see [Ah]). These are ordinary TEX macros written
using a few simple conventions listed below. First,
the actions themselves will be executed inside a large
\ifcase statement (this is not always the case, see
the discussion of ‘optimization’ below, but it would
be better to assume that it is); thus, care must
be taken to write the macros so that they can be
‘skipped’ by TEX’s scanning mechanism. Second, in-
stead of using bison’s $n syntax to access the value
stack, a variety of \yy p macros are provided. Fi-
nally, the ‘driver’ (a small C program, see below)
provided with the package merely cycles through the
actions to output TEX macros, so one has to use one
of the C macros provided with the package to out-
put TEX in a proper form. One such macro is TeX_,
used as TeX_("{TEX tokens}");.

The next step is the most technical, and the one
most in need of automation. A Makefile provided
with the package shows how such automation can be
achieved. The newly generated parser (the ‘.c-file’
produced by bison) is #include’d in (yes, included,
not merely linked to) a special ‘driver’ file. No mod-
ifications to the driver file or the bison produced
parser are necessary; all one has to do is call a C

compiler with an appropriately defined macro (see
the Makefile for details). The resulting executable
is then run which produces a .tex file that con-
tains the macros necessary to use the freshly-minted
parser in TEX. This short brush with a C compiler
is the only time one ventures outside of the world of
pure TEX to build a parser with this software (not
counting the one needed to create the accompany-
ing scanner if one is desired). It is possible to add
a ‘plugin’ to bison to create a ‘TEX output mode’
but at the moment the ‘lazy’ version seems to be
sufficient.

Now \input this file into your TEX document
along with the macros that come with the package
and voilà! You have a brand new parser in TEX!
A full-featured parser for the bison input file format
is included, and can be used as a template. For
smaller projects, it might help to take a look at the
examples portion of the package.

The discussion above glosses over a few impor-
tant details that anybody who has experience writ-
ing ‘ordinary’ (i.e. non-TEX) parsers in bison would
be eager to find out. Let us now discuss some of
these details.

TUGboat, Volume 35 (2014), No. 1 73

Data structures for parsing

A surprisingly modest amount of machinery is re-
quired to make a bison-generated parser ‘tick’. In
addition to the standard arithmetic ‘bag of tricks’
(integer addition, multiplication and conditionals),
some basic integer and string array (or closely re-
lated list and stack) manipulation is all that is
needed.

Parser tables and stack access ‘in the raw’ are
normally hidden from the parser designer but cre-
ating lists and arrays is standard fare for most se-
mantic actions. The bison parser supplied with the
package does not use any techniques that are more
sophisticated than simple token register operations.
Representing and accessing arrays this way (see Ap-
pendix D of The TEXbook or the \concat macro in
the package) is simple and intuitive but computa-
tionally expensive. The computational costs are not
prohibitive though, as long as the arrays are kept
short. In the case of large arrays that are read often,
it pays to use a different mechanism. One such tech-
nique (used also in [Go], [Gr], and [Wo]) is to ‘split’
the array into a number of control sequences (cre-
ating an associative array of token sequences called,
for example \array[n], where n is an index value).
This approach is used with the parser and scanner
tables (which tend to be quite large) when the parser
is ‘optimized’ (more about this later). Once again,
it is possible to write the parser semantic actions
without this (slightly unintuitive and cumbersome
to implement) machinery.

This covers most of the routine computations
inside semantic actions; all that is left is a way to
‘tap’ into the stack automaton built by bison using
an interface similar to the special $n variables uti-
lized by the ‘genuine’ bison parsers (i.e. written in
C or any other target language supported by bison).

This role is played by the several varieties of
\yy p command sequences (for the sake of complete-
ness, p stands for one of (n), [name],]name[or
n; here n is a string of digits; and a ‘name’ is any
name acceptable as a symbolic name for the term
in bison). Instead of going into the minutiae of
various flavors of \yy-macros, let me just mention
that one can get by with only two ‘idioms’ and still
be able to write parsers of arbitrary sophistication:
\yy(n) can be treated as a token register containing
the value of the n-th term of the rule’s right hand
side, n > 0. The left hand side of a production is
accessed through \yyval. A convenient shortcut is
\yy0{〈TEX material〉} which will expand the 〈TEX
material〉 inside the braces. Thus, a simple way

Parsers in TEX and using CWEB for general pretty-printing

to concatenate the values of the first two produc-
tion terms is \yy0{\the\yy(1)\the\yy(2)}. The
included bison parser can also be used to provide
support for ‘symbolic names’, analogous to bison’s
$[name] syntax but this requires a bit more effort
on the user’s part in order to initialize such sup-
port. It could make the parser more readable and
maintainable, however.

Naturally, a parser writer may need a number of
other data abstractions to complete the task. Since
these are highly dependent on the nature of the pro-
cessing the parser is supposed to provide, we refer
the interested reader to the parsers included in the
package as a source of examples of such specialized
data structures.

Pretty-printing support with
formatting hints

The scanner ‘engine’ is propelled by the same set of
data structures and operations that drive the parser
automaton: stacks, lists and the like. Table manip-
ulation happens ‘behind the scenes’ just as in the
case of the parser. There is also a stack of ‘states’
(more properly called subautomata) that is manip-
ulated by the user directly, where the access to the
stack is coded as a set of macros very similar to the
corresponding C functions in the ‘real’ flex scan-
ners. The ‘handoff’ from the scanner to the parser
is implemented through a pair of registers: \yylval,
a token register containing the value of the returned
token and \yychar, a \count register that contains
the numerical value of the token to be returned.

Upon matching a token, the scanner passes one
crucial piece of information to its user: the char-
acter sequence representing the token just matched
(\yytext). This is not the whole story, though:
three more token sequences are made available to
the parser writer whenever a token is matched.

The first of these is simply a ‘normalized’ ver-
sion of \yytext (called \yytextpure). In most cases
it is a sequence of TEX tokens with the same char-
acter codes as the one in \yytext but with their
category codes set to 11. In cases when the tokens
in \yytext are not (character code, category code)
pairs, a few simple conventions are followed, ex-
plained elsewhere. This sequence is provided merely
for convenience and its typical use is to generate a
key for an associative array.

The other two sequences are special ‘stream
pointers’ that provide access to the extended scan-
ner mechanism in order to implement passing of ‘for-
matting hints’ to the parser without introducing any

74 TUGboat, Volume 35 (2014), No. 1

changes to the original grammar, as explained be-
low.

Unlike strict parsers employed by most com-
pilers, a parser designed for pretty-printing cannot
afford being too picky about the structure of its
input ([Go] calls such parsers ‘loose’). As a way
of simple illustration, an isolated identifier, such as
‘lg_integer’ can be a type name, a variable name,
or a structure tag (in a language like C for exam-
ple). If one expects the pretty-printer to typeset
this identifier in a correct style, some context must
be supplied, as well. There are several strategies a
pretty-printer can employ to get hold of the neces-
sary context. Perhaps the simplest way to handle
this, and to reduce the complexity of the pretty-
printing algorithm, is to insist on the user providing
enough context for the parser to do its job. For short
examples like the one above, this is an acceptable
strategy. Unfortunately, it is easy to come up with
longer snippets of grammatically deficient text that
a pretty-printer should be expected to handle. Some
pretty-printers, such as the one employed by CWEB

and its ilk (WEB, FWEB), use a very flexible bottom-
up technique that tries to make sense of as large a
portion of the text as it can before outputting the
result (see also [Wo], which implements a similar al-
gorithm in LATEX).

The expectation is that this algorithm will han-
dle the majority of the cases with the remaining few
left for the author to correct. The question is, how
can such a correction be applied?

CWEB itself provides two rather different mech-
anisms for handling these exceptions. The first uses
direct typesetting commands (for example, @+ and
@* for cancelling and introducing a line break, resp.)
to change the typographic output.

The second (preferred) way is to supply hidden
context to the pretty-printer. Two commands, @;

and @[. . .@] are used for this purpose. The former
introduces a ‘virtual semicolon’ that acts in every
way like a real one except it is not typeset (it is
not output in the source file generated by CTANGLE,
either but this has nothing to do with pretty-print-
ing, so I will not mention CTANGLE anymore). For
instance, from the parser’s point of view, if the pre-
ceding text was parsed as a ‘scrap’ of type exp, the
addition of @; will make it into a ‘scrap’ of type stmt
in CWEB’s parlance. The latter construct (@[. . .@]),
is used to create an exp scrap out of whatever hap-
pens to be inside the brackets.

This is a powerful tool at one’s disposal. Stylis-
tically, this is the right way to handle exceptions as
it forces the writer to emphasize the logical struc-
ture of the formal text. If the pretty-printing style

Alexander Shibakov

is changed extensively later, the texts with such hid-
den contexts should be able to survive intact in the
final document (as an example, using a break after
every statement in C may no longer be considered
appropriate, so any forced break introduced to sup-
port this convention would now have to be removed,
whereas @;’s would simply quietly disappear into the
background).

The same hidden context idea has another im-
portant advantage: with careful grammar fragment-
ing (facilitated by CWEB’s or any other literate pro-
gramming tool’s ‘hypertext’ structure) and a more
diverse hidden context (or even arbitrary hidden
text) mechanism, it is possible to use a strict parser
to parse incomplete language fragments. For exam-
ple, the productions that are needed to parse C’s
expressions form a complete subset of the parser.
If the grammar’s ‘start’ symbol is changed to ex-
pression (instead of the translation-unit as it is in
the full C grammar), a variety of incomplete C frag-
ments can now be parsed and pretty-printed. When-
ever such granularity is still too ‘coarse’, carefully
supplied hidden context will give the pretty-printer
enough information to adequately process each frag-
ment. A number of such sub-parsers can be tried on
each fragment (this may sound computationally ex-
pensive, however, in practice, a carefully chosen hi-
erarchy of parsers will finish the job rather quickly)
until a correct parser produced the desired output.

This somewhat lengthy discussion brings us to
the question directly related to the tools described
in this article: how does one provide typographical
hints or hidden context to the parser?

One obvious solution is to build such hints
directly into the grammar. The parser designer
can, for instance, add new tokens (terminals, say,
BREAK_LINE) to the grammar and extend the pro-
duction set to incorporate the new additions. The
risk of introducing new conflicts into the grammar is
low (although not entirely non-existent, due to the
lookahead limitations of LR(1) grammars) and the
changes required are easy, although very tedious, to
incorporate.

In addition to being labor intensive, this solu-
tion has two other significant shortcomings: it alters
the original grammar and hides its logical struc-
ture, and it ‘bakes in’ the pretty-printing conven-
tions into the language structure (making ‘hidden’
context much less ‘stealthy’).

A much better approach involves inserting the
hints at the lexing stage and passing this informa-
tion to the parser as part of the token ‘values’. The
hints themselves can masquerade as characters ig-
nored by the scanner (white space, for example) and

TUGboat, Volume 35 (2014), No. 1 75

preprocessed by a specially designed input routine.
The scanner then simply passes on the values to the
parser.

The difficulty lies in synchronizing the token
production with the parser. This subtle complica-
tion is very familiar to anyone who has designed
TEX’s output routines: the parser and the lexer are
not synchronous, in the sense that the scanner might
be reading several (in the case of the general LR(n)
parsers) tokens ahead of the parser before deciding
on how to proceed (the same way TEX can consume
a whole paragraph’s worth of text before exercising
its page builder).

If we simple-mindedly let the scanner return ev-
ery hint it has encountered so far, we may end up
feeding the parser the hints meant for the token that
appears after the fragment the parser is currently
working on. In other words, when the scanner ‘backs
up’ it must correctly back up the hints as well.

This is exactly what the scanner produced by
the tools in this package does: along with the main
stream of tokens meant for the parser, it produces
two hidden streams (called the \format stream and
the \stash stream) and provides the parser with
two strings (currently only strings of digits are used
although arbitrary sequences of TEX tokens can
be used as pointers) with the promise that all the
‘hints’ between the beginning of the corresponding
stream and the point labelled by the current stream
pointer appeared among the characters up to and,
possibly, including the ones matched as the current
token. The macros to extract the relevant parts
of the streams (\yyreadfifo and its cousins) are
provided for the convenience of the parser designer.
The interested reader can consult the input routine
macros for the details of the internal representation
of the streams.

In the interest of full disclosure, let me point
out that this simple technique introduces a signifi-
cant strain on TEX’s computational resources: the
lowest level macros, the ones that handle charac-
ter input and are thus executed (sometimes multi-
ple times), for every character in the input stream
are rather complicated and therefore, slow. When-
ever the use of such streams is not desired a simpler
input routine can be written to speed up the pro-
cess (see \yyinputtrivial for a working example
of such macro).

The parser function

To achieve such a tight integration with bison, its
parser template, yyparse() was simply translated
into TEX using the following well known method.

Parsers in TEX and using CWEB for general pretty-printing

Given the code (where goto’s are the only
means of branching but can appear inside condi-
tionals):

label A: ...

[more code . . .]

goto C;

[more code . . .]

label B: ...

[more code . . .]

goto A;

[more code . . .]

label C: ...

[more code . . .]

one way to translate it into TEX is to define a set
of macros (call them \labelA, \labelAtail and
so forth for clarity) that end in \next (a common
name for this purpose). Now, \labelA will imple-
ment the code that comes between label A: and
goto C;, whereas \labelAtail is responsible for
the code after goto C; and before label B: (pro-
vided no other goto’s intervene which can always be
arranged). The conditional preceding goto C; can
now be written in TEX as

\if(condition)
\let\next=\labelC

\else

\let\next=\labelAtail

where (condition) is an appropriate translation of
the corresponding condition in the code being trans-
lated (usually, one of ‘=’ or ‘6=’). Further details can
be extracted from the TEX code that implements
these functions where the corresponding C code is
presented alongside the macros that mimic its func-
tionality.

Debugging

If the tools in the package are used to create medium
to high complexity parsers, the question of debug-
ging will come up sooner or later. The grammar de-
sign stage of this process can utilize all the excellent
debugging facilities provided by bison and flex (re-
porting of conflicts, output of the automaton, etc.).
The Makefiles supplied with the package will auto-
matically output all the debugging information the
corresponding tool can provide. Eventually, when
all the conflicts are ironed out and the parser begins
to process input without performing any actions, it
becomes important to have a way to see ‘inside’ the
parsing process. Since the processing performed by

76 TUGboat, Volume 35 (2014), No. 1

the generated parser is done in several stages, the
debugging may become rather involved.

All the debugging features are activated by
using various \iftrace. . . conditionals, as well as
\ifyyinputdebug and \ifyyflexdebug (for ex-
ample, to look at the parser stack, one would set
\tracestackstrue). When all of the conditionals
are activated, a lot of output is produced. At this
point it is important to narrow down the prob-
lem area and only activate the debugging features
relevant to any errant behaviour exhibited by the
parser. Most of the debugging features built into
ordinary bison parsers (and flex scanners) are
available.

In general, debugging parsers and scanners (and
debugging in general) is a very deep topic that may
require a separate paper (or maybe a book!) all by
itself, so I will simply leave it here and encourage
the reader to experiment with the included parsers
to learn the general operational principles behind
the parsing automaton. One needs to be aware that,
unlike the ‘real’ C parsers, the TEX parser has to deal
with more than simply straight text. So if it looks
like the parser (or the scanner) absolutely has to
accept the (rejected) input displayed on the screen,
just remember that an ‘a’ with a category code 11
and an ‘a’ with a category code 12 look the same
on the terminal while TEX and the parser/scanner
may treat them as completely different characters
(this behavior itself can be fine tuned by changing
\yyinput).

Speeding up the parser

By default, the generated parser and scanner keep
all of their tables in separate token registers. Each
stack is kept in a single macro. Thus, every time a
table is accessed, it has to be expanded making the
table access latency linear in the size of the table.
The same holds for stacks and the action ‘switches’,
of course. While keeping the parser tables (that are
constant) in token registers does not have any better
rationale than saving control sequence memory (the
most abundant memory in TEX), this way of storing
stacks does have an advantage when multiple parsers
come into play simultaneously. All one has to do to
switch from one parser to another is to save the state
by renaming the stack control sequences accordingly.

When the parser and scanner are ‘optimized’
(by saying \def\optimization{5}, for example),
all these control sequences are ‘spread over’ the ap-
propriate associative arrays (by creating a number
of control sequences that look like \array[n], where

Alexander Shibakov

n is the index, as explained above). While it is cer-
tainly possible to optimize only some of the parsers
(if your document uses multiple) or even only some
parts of a given parser (or scanner), the details of
how to do this are rather technical and are left for
the reader to discover by reading the examples sup-
plied with the package. At least at the beginning it
is easier to simply set the highest optimization level
and use it consistently throughout the document.

Use with CWEB

Since the macros in the package were designed to
support pretty-printing of languages other than C in
CWEB it makes sense to spend a few paragraphs on
this particular application. The CWEB system con-
sists of two weakly related programs: CWEAVE and
CTANGLE. The latter extracts the C portion of the
users input, and outputs a C file after an appro-
priate rearrangement of the various sections of the
code. The task of CWEAVE is very different and ar-
guably more complex: not only does it have to be
aware of the general ‘hierarchy’ of various subsec-
tions of the program to create cross references, an
index, etc., it also has to understand enough of the C

code in order to pretty-print it. Whereas CTANGLE

simply separates the program code from the pro-
grammer’s documentation, rearranges it and out-
puts the original program text (with added #line

directives and simple C comments that can be eas-
ily removed in postprocessing if necessary), the out-
put of CWEAVE bears very little resemblance to the
original program. It might sound a bit exaggerated
but CWEAVE’s processing is ‘one-way’: it would be
difficult or even impossible to write software that
‘undoes’ the pretty-printing performed by CWEAVE.

There is, however, a loophole that allows one to
use CWEB with practically any language, and pretty-
print the results, if an appropriate ‘filter’ is available.
The saving grace comes in the form of CWEB’s ver-
batim output: any text inside @= and @> undergoes
some minimal processing (mainly to ‘escape’ dan-
gerous TEX characters such as ‘$’) and is put inside
\vb{. . .} by CWEAVE.

The macros in the package take advantage of
this feature by collecting all the text inside \vb

groups and trying to parse it. If the parsing pass
is successful, pretty-printed output is produced, if
not, the text is output in ‘typewriter’ style.

With languages such as bison’s input script, an
additional complication has to be dealt with: most
of the time the actions are written in C so it makes
sense to use CWEAVE’s C pretty-printer to typeset the
action code. Most material outside of \vb groups

TUGboat, Volume 35 (2014), No. 1 77

is therefore assumed to be C code and is carefully
collected and ‘cleaned up’ by the macros included in
the package.

For the purposes of documenting the TEX
parser, one additional feature of CWEAVE is taken
advantage of: the text inside double quotes, ". . ."
is treated similarly to the verbatim portion of the
input (this can be viewed as a ‘local’ version of the
verbatim sections). Moreover, CWEAVE allows one
to treat a function name (or nearly any identifier)
as a TEX macro. These two features are enough
to implement pretty-printing of semantic actions in
TEX. The macros will turn an input string such
as, e.g. ‘TeX_("\\relax");’ into ‘◦’ (for the sake
of convenience, the string above would actually be
written as ‘TeX_("/relax");’ as explained in
the manual for the package). See the documenta-
tion that comes with the package and the bison

language pretty-printer implementation for any ad-
ditional details.

An example

As an example, let us walk through the development
process of a simple parser. Since the language itself
is not of any particular importance, a simple gram-
mar for additive expressions was chosen. The exam-
ple, with a detailed description, and all the neces-
sary files, is included in the examples directory. The
Makefile there allows one to type, say, make step1

to produce all the files needed in the first step of this
short walk-through. Finally, make docs will pro-
duce a pretty-printed version of the grammar, the
regular expressions, and the test TEX file along with
detailed explanations of every stage.

As the first step, one creates a bison input file
(expp.y) and a similar input for flex (expl.l). A
typical fragment of expp.y looks like the following:

value:

expression {TeX_("/yy0{/the/yy(1)}");}

;

The scanner’s regular expression section, in its en-
tirety is:

[\f\n\t\v] {TeX_("/yylexnext");}

{id} {

TeX_("/yylexreturnval{IDENTIFIER}");}

{int} {

TeX_("/yylexreturnval{INTEGER}");}

[+*()] {TeX_("/yylexreturnchar");}

. {

TeX_("/iftracebadchars");

TeX_(" /yycomplain{%%");

TeX_(" invalid character(s): %%");

Parsers in TEX and using CWEB for general pretty-printing

TeX_(" /the/yytext}");

TeX_("/fi");

TeX_("/yylexreturn{$undefined}");

}

Once the files have been prepared and debugged, the
next step is to generate the ‘driver’ files, ptabout

and ltabout. For the parser ‘driver’, this is done
with

bison expp.y -o expp.c

gcc -DPARSER_FILE=\

\"examples/expression/expp.c\" \

-o ptabout ../../mkeparser.c

The first line generates the parser from the bison

input file that was prepared in the first step and the
next line uses this file to produce a ‘driver’. If the
included Makefile is used, the file mkeparser.c is
generated automatically, otherwise one has to make
sure that it exists and resides in the appropriate
directory first. It has no external dependencies and
can be freely moved to any place that is convenient.

Next, run ptabout and ltabout to produce the
automata tables:

ptabout --optimize-actions ptab.tex

ltabout --optimize-actions ltab.tex

Now, look inside expression.sty for a way to
include the parser in your own documents, or sim-
ply \input it in your own TEX file. Executing
make test.tex will produce a test file for the new
parser. This is it!

Acknowledgment

The author would like to thank the editors, Barbara
Beeton and Karl Berry, for a number of valuable
suggestions and improvements to this article.

References

[Ah] Alfred V. Aho et al., Compilers: Principles,
Techniques, and Tools, Pearson Education,
2006.

[Bi] Charles Donnelly and Richard Stallman,
Bison, The Yacc-compatible Parser Generator,
The Free Software Foundation, 2013.
http://www.gnu.org/software/bison/

[DEK1] Donald E. Knuth, The TEXbook,
Addison-Wesley Reading, Massachusetts,
1984.

[DEK2] Donald E. Knuth The future of TEX and
METAFONT, TUGboat 11 (4), p. 489,
1990. http://tug.org/TUGboat/tb11-4/

tb30futuretex.pdf

78 TUGboat, Volume 35 (2014), No. 1

[Do] Jean-luc Doumont, Pascal pretty-printing:
An example of “preprocessing with TEX”,
TUGboat 15 (3), 1994 — Proceedings
of the 1994 TUG Annual Meeting.
http://tug.org/TUGboat/tb15-3/

tb44doumont.pdf

[Er] Sebastian Thore Erdweg and Klaus
Ostermann, Featherweight TEX and Parser
Correctness, Proceedings of the Third
International Conference on Software
Language Engineering, pp. 397–416,
Springer-Verlag Berlin, Heidelberg, 2011.

[Fi] Jonathan Fine, The \CASE and \FIND

macros, TUGboat 14 (1), pp. 35–39,
1993. http://tug.org/TUGboat/tb14-1/

tb38fine.pdf

[Go] Pedro Palao Gostanza, Fast scanners and
self-parsing in TEX, TUGboat 21 (3),
2000 — Proceedings of the 2000 Annual
Meeting. http://tug.org/TUGboat/tb21-3/

tb68gost.pdf

[Gr] Andrew Marc Greene, BASIX—An interpreter
written in TEX, TUGboat 11 (3), 1990 —
Proceedings of the 1990 TUG Annual
Meeting. http://tug.org/TUGboat/tb11-3/

tb29greene.pdf

[Ha] Hans Hagen, LuaTEX: Halfway to version 1,
TUGboat 30 (2), pp. 183–186, 2009.
http://tug.org/TUGboat/tb30-2/

tb95hagen-luatex.pdf

[Ie] R. Ierusalimschy et al., Lua 5.1
Reference Manual, Lua.org, August
2006. http://www.lua.org/manual/5.1/

[La] The l3regex package: Regular
expressions in TEX, The LATEX3 Project.
http://www.ctan.org/pkg/l3regex

[Pa] Vern Paxson et al., Lexical Analysis
With Flex, for Flex 2.5.37, July 2012.
http://flex.sourceforge.net/manual/

[Wo] Marcin Woliński, Pretprin—A LATEX2ε
package for pretty-printing texts in formal
languages, TUGboat 19 (3), 1998 —
Proceedings of the 1998 TUG Annual
Meeting. http://tug.org/TUGboat/tb19-3/

tb60wolin.pdf

� Alexander Shibakov
Dept. of Mathematics
Tennessee Tech. University
Cookeville, TN
http://math.tntech.edu/alex

Alexander Shibakov

